義務教育9年間の最大の難所が来た! 小5 1月

小5保護者必見!算数「割合」克服のカギは〇〇だった!

新しい年が始まりました。お子様の小学校生活もいよいよ後半戦。高学年になり、学習内容も難しくなってきましたね。今年もお子さまの学びを全力でサポートしてまいりますので、どうぞよろしくお願いいたします。

さて、小学校算数の中でも特に重要で、そしてお子様にとって最初の大きな壁となる単元、「割合」に差し掛かる時期がやってきました。この単元をしっかり理解できるかどうかが、今後の算数・数学への自信と成績に大きく影響します。

「割合」って、なぜ難しいの?

「100円の2倍は何円ですか?」には簡単に答えられても、「298円の税込価格は何円ですか?」になると悩んでしまうお子様は少なくありません。これは、「割合」が、「もとにする量」(基準量)、「くらべる量」(比較量)、「割合」の関係性を理解する必要があるためです。

例えば、「100円の2割引」は計算できても、「250円の2割引」になると途端に難しく感じる子どもが多いのです。100円を基準とした場合、1割引は10円、2割引は20円とすぐに計算できますが、250円を基準とした場合は、1割引を計算するために250×0.1をする必要があり、ここでつまずいてしまうのです。

小学校の授業だけでは時間が足りない!

「割合」という単元は、理解を深めるには、時間をかけてじっくり取り組む必要があります。しかし、学校の授業時間は限られており、十分な練習時間を確保することが難しいのが現状です。

そこで、家庭学習や塾での学習が重要になります。

マックスの取り組み:お子様に「割合」を好きになってもらう!
マックスでは、1月から夏前までの期間、「割合」の理解を深めるための特別なプログラムを用意しています。

  • 繰り返しの徹底: 毎回の小テストで理解度をチェックし、繰り返し学習することで、確実に定着させます。つまずきやすいポイントを何度も復習することで、苦手意識を克服できます。
  • 個別対応で苦手をフォロー: 一人ひとりの理解度に合わせて丁寧に指導し、「わからない」を「わかった!」に変えていきます。お子様がどこでつまずいているのかを的確に見極め、個別に最適な指導を行います。
  • 実践的な問題で活用力を育成:「実際の買い物」や「レシピの分量変更」など、身近な例を通して、楽しく「割合」を学べる工夫をしています。算数が日常生活でどのように役立つのかを理解することで、学習意欲を高めます。

保護者の皆さまへのお願い

「割合」を克服するためには、家庭でのサポートも大きな力となります。ぜひ、お子様と一緒に「割合」に挑戦してみましょう!

  • 一緒に問題を解いてみる
    簡単な問題を親子で一緒に解き、「解けた!」という達成感を共有しましょう。
  • 日常生活での会話に取り入れる
    例:「この商品、30%引きだといくらになるかな?」といった日常の買い物を学びに繋げます。
  • ポジティブな声かけをする
    「少しずつ慣れてきたね!」「よく頑張ってる!」と努力を褒めることで、モチベーションを高めましょう。
  • 家庭学習で役立つツールを活用する(別途リンク掲載予定)
    おすすめのドリルやアプリなどを活用して、家庭学習を充実させましょう。

何かご質問やご不明な点がございましたら、お気軽にご相談ください。
お子様の「割合」の克服、そして算数が好きになるように、私たちと一緒に頑張りましょう!

ご家庭用 算数の教え方のポイント

算数教室 割合 

算数教室 三角形・平行四辺形の面積 

割合

まず、導入時期は、形で処理できるようにします。

解き方の手順

① 問題文の中から「わ」(割合)を見つける。割合は~倍,~%,~割,単位のない数
② 問題文の中から「も」(もとにする量)を見つける。もとにする量は問題文の中で割合の前の「の」の前にある
③ 問題文の中から「く」(くらべられる量)を見つける。問題文の中で残っている数がくらべられる量。

「もとにする量」と「くらべられる量」は同じ単位なので、もとにする量の発見が重要。

④ 数字で分かった2カ所を  に代入して計算する。

問題 : 「4mは9mの何倍ですか。」

考え方
① 問題文の中から「割合」を見つける ⇒⇒倍がついている「何倍」
② 問題文の中から「もとにする量」を見つける。 ⇒⇒問題文の中で割合の前の「の」の前にあるのは「9m」
③ 問題文の中から「くらべられる量」を見つける ⇒⇒残っているのは「4m」
④ 数字で分かった2カ所を
 に代入する。
「割合」を求めるには、横棒だからわり算をする。 4÷9=
  ←←← わり算は分数にする。

子どものノートの例

上記のノートの例のように、式と答えだけでなく、「わ」(割合)、「も」(もにする量)、「く」(くべられる量)をチェックして、すべてをノートに書き出します。

問題を読んだら、無意識に「わ」、「も」、「く」をチェックすることが基本です。 最初から徹底して基本にこだわっていくことが何より大切です。「難しくなったらやる」と言いますが、普段からやっていないと、イザ、本当に難しくなった時に、手に技術がついてなくて使えないから、「難しくなったらやる」は、現実的にはアウトです。

百分率や歩合を に入れる時は、「割合」を 小数か分数にします。この部分は、下の表を覚えれば、

簡単です。

1%=0.01 1割=0.1 10%=0.1 1分=0.01 100%=1 1厘=0.001

1題1題、めんどくさがらずに、自然に頭が働くようになるまで ノートに必ず「わ」、「も」、「く」を書き出してから、式を立てます。

問題: みち子さんは色紙を75枚持っています。そのうち赤い色紙は33枚で、白い紙は全体の20%にあたります。残りは青い色紙だそうです。
(1)赤い色紙は全体の何%にあたりますか。
(2)青い色紙は何枚ありますか。

基本型「~は-の□%」で考えます。
(1) 赤い色紙は33枚、全体は75枚、だから「33枚は75枚の何%」かということ。
「わ」:何%、 「も」:75枚、 「く」:33枚 だから 33÷75=0.44 
(答)44%

(2)赤が全体の44%、白が全体の20%だから、青は、100-(44+20)=36%

「青い色紙は全体の36%」だから  75×0.36=27 答) 27まい

中学・高校で使える割合の力を獲得するために、小5の後半にはマスターしたい問題の例。

平行四辺形と三角形の面積

①  公式を覚える。
②  ノートに図を書き写して「底辺」「高さ」が垂直に交わる所を確認する。

底辺と高さが直交しているかどうかを確かめないまま、
問題に出ている2つの数を公式に入れて計算する子がいます。

多角形の面積は、三角形や四角形の面積を組み合わせます。
ノートに図を書いて、いろいろな線を引いてみて三角形や四角形に分けてみます。
この際にもノートに図を書き写して、「底辺」と「高さ」が直交しているかのチェックが必要です。

問題 : 図の四角形の面積を求めなさい。

ノートの例

四角形を①②の二つの三角形に分ける。

①の三角形の面積  3×2.4÷2=3.6
②の三角形の面積  2×3.5÷2=3.5 よって四角形の面積は 3.6+3.5=7.1㎝2

問題 : 次の色を付けた部分の面積は何㎝2か。

全体の四角形から①と②の三角形を引く。

別解 求める四角形の面積を①と②の三角形に分ける。

問題 : 次の色を付けた部分の面積は何㎝2か。

2つの三角形を合わせると三角形の底辺は平行四辺形の底辺と同じ。2つの三角形の高さは5cmで、同じだから新しい三角形の高さも5cm。

問題 : 次の色を付けた部分の面積は何㎝2か。

一見難しそうですが、上側の図のように2つの三角形(①,②)に分けると簡単に面積を求められます。

鶴ヶ谷教室  ☎252-0998 989-0824 宮城野区鶴ヶ谷4-3-1

◆幸 町 教室  ☎295-3303 983-0836 宮城野区幸町3-4-19

電話でのお問合せ AM10:30~PM22:30